The relationship between prompt and acc expected values

Last updated on September 26, 2025 pm

prompt的PPL

promptx1:Tx_{1:T},给定LLM πθ\pi_{\theta}(也就是条件分布pθ()p_{\theta}(\cdot|\cdot)) 那么其在teacher forcing下对于整个prompt的对数似然为:

logpθ(x1:T)=t=1Tlogpθ(xtxt<t).logp_{\theta}(x_{1:T}) = \sum_{t=1}^T{logp_{\theta}(x_t|x_{t<t})}.

平均交叉熵:

Hθ(x1:T)  =  1Tt=1Tlogpθ(xtx<t).H_\theta(x_{1:T}) \;=\; -\frac{1}{T}\sum_{t=1}^{T}\log p_\theta(x_t\mid x_{<t}).

Perplexity:

PPLθ(x1:T)  =  exp ⁣(Hθ(x1:T))  =  exp ⁣(1Tt=1Tlogpθ(xtx<t)).\mathrm{PPL}_\theta(x_{1:T}) \;=\; \exp\!\Big(H_\theta(x_{1:T})\Big) \;=\; \exp\!\Big(-\frac{1}{T}\sum_{t=1}^{T}\log p_\theta(x_t\mid x_{<t})\Big).

把prompt的生成看作MDP过程


The relationship between prompt and acc expected values
https://lishilong.site/2025/09/26/RL/Prompt_and_E_acc/
Author
Shilong Li
Posted on
September 26, 2025
Updated on
September 26, 2025
Licensed under